Ansh Bhansali

anshbhansali5@gmail.com | +1 (217) 402-1894 | Portfolio | GitHub | LinkedIn | Summer 2026 Internship

EDUCATION

University of Illinois Urbana-Champaign, IL, USA

Aug 2025 - Aug 2026

Master's in Autonomy and Robotics

Coursework: Humanoid Robots, Computer Vision, Safe Autonomy, Control Systems

SKILLS

- Languages: Python, C++, Rust
- Robotics: ROS2, SLAM, MoveIt, Sensor Fusion (Kalman Filters), Motion Planning (RRT, A*), Control Barrier Functions
- AI/ML: Computer Vision (OpenCV, YOLO), PyTorch, TensorFlow, Reinforcement Learning (PPO)
- Simulation & Design Tools: Gazebo, MuJoCo, PyBullet, NVIDIA Isaac Sim, AirSim, KiCad, Altium Designer, Fusion 360

EXPERIENCE

Electronics Engineering Intern - Dimension Six Technologies, Mumbai, IN

May 2024 – May 2025

Project: STM32-Based Autonomous E-Bike Control System

- Enhanced STM32 firmware with a novel power management algorithm, increasing e-bike range by 40%.
- Designed and routed a 4-layer PCB in KiCad for a custom ESC, reducing power losses by 15% under peak load.
- Deployed an IoT solution using ESP32S3 and RFID for remote monitoring and secure automated payments.

Robotics Research Intern - Indian Institute of Technology, Bombay, Mumbai, IN

Jan 2024 – June 2024

Project: SLAM-based Autonomous Military Robot

- Developed SLAM-based autonomous robot in ROS2, achieving 95% navigation accuracy in dynamic environments.
- Improved localization by 20% via IMU, GPS, and RGB-D camera sensor fusion.
- Trained and integrated a YOLOv3 model for real-time human detection and robust stair-climbing navigation.

PROJECTS

Humanoid Whole-Body Motion Planning (Drake, MoveIt) (Github)

- Implemented a motion planner for a humanoid URDF, optimizing trajectories for safe reaching tasks without loss of balance.
- Enforced ZMP and support polygon constraints, increasing successful manipulation task completions by 40%.
- Reduced trajectory execution time by 15% while ensuring static stability through efficient trajectory optimization.

Terrain-Aware Locomotion Pipeline (ROS2, Gazebo, MoveIt) (Github)

- Developed a **perception pipeline** for a quadruped using a depth camera to generate an elevation map for terrain analysis.
- Integrated a terrain classifier with a footstep planner in MoveIt, successfully navigating 95% of the tested complex terrains.
- Demonstrated a gait strategy that reduced fall rates by 50% compared to a baseline blind-walking controller on uneven surfaces.

RL Locomotion with Safety Layer (PPO, Control Barrier Functions) (Github)

- Trained a terrain-adaptive locomotion policy using PPO and integrated CBF as a real-time safety filter.
- Achieved zero-fall locomotion, with the CBF layer rejecting 99% of unsafe actions proposed by the PPO policy.
- Maintained 90% of the original PPO policy's traversal speed, demonstrating high efficiency with a verifiable safety guarantee.

VIO + Footstep Planner Fusion (ROS2 Nav2, VINS-Fusion) (Github)

- Integrated VIO with a quadruped footstep planner, enabling autonomous navigation in an unknown, GPS-denied environment.
- Implemented **drift correction strategies** that reduced localization error by **60%** compared to standalone VIO.
- Achieved a 98% task success rate in navigating a complex obstacle course, demonstrating reliable localization and planning.

Quadruped Locomotion via PPO (PyBullet, PPO, Python) (Github)

- Trained a quadruped in PyBullet using PPO, designing reward functions to promote stable gait generation on irregular surfaces.
- Achieved a 30% reduction in fall rate compared to baseline PID controllers when traversing uneven terrains.
- Improved the robot's forward velocity by 25% while maintaining gait stability and minimizing energy consumption.

EMG-Controlled Prosthetic Arm (ESP32, Python ML, Fusion 360) (YouTube)

- Designed and built a prosthetic arm, programming an ESP32-based system to process EMG signals for fine-motor control.
- Developed a Python XGBoost model that achieved 96% accuracy in real-time classification of 5 distinct hand gestures.
- Optimized the signal processing and classification pipeline with an end-to-end latency of under 100ms.

AWARDS & ACHIEVEMENTS

- Project Showcase, Cal Hacks (2025) Developed "GEST," a real-time, gesture-based teleoperation system for the XLE robot.
- Finalists, Smart India Hackathon (2024) Presented a Ganga River water monitoring system for pollution prediction.